NRF24L01初学(二)驱动函数的基本认识

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 一、NRF24L01基本函数介绍
  • 二、接收或发送模式配置过程
  • 三、具体函数介绍
    • 1.针对NRF24L01对SPI进行修改
    • 2.NRF24L01初始化
    • 3.配置SPI的传输速度
    • 4.往串行Flash写入并接收一个字节数据
    • 5.检测NRF24L01硬件连接是否正常
    • 6.SPI写寄存器
    • 7.SPI读寄存器
    • 8.在指定位置读出指定长度的数据
    • 9.在指定位置写入指定长度的数据
    • 10.将NRF24L01配置为接收模式
    • 11.将NRF24L01配置为发送模式
    • 12.NRF24L01接收一次数据
    • 13.NRF24L01发送一次数据
    • 14.开启NRF24L01的低功耗模式
  • 总结


一、NRF24L01基本函数介绍

NRF24L01驱动函数包括:
1.针对NRF24对SPI进行修改;
2.IO口配置及NRF24L01初始化;
3.自检;
4.向串行FLASH中写入或接收一个字节的数据;
5.向NRF24L01的寄存器写入数据;
6.从NRF24L01的寄存器中读取数据;
7.在指定位置读出指定长度的数据;
8.在指定位置写入指定长度的数据;
9.启动NRF24L01发送一次数据;
10.启动NRF24L01接收一次数据;
11.将NRF24L01配置为接收模式;
12.将NRF24L01配置为发送模式;
13.低功耗模式配置;
14.配置发送和接收地址。

const uint8_t TX_ADDRESS[TX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //发送地址
const uint8_t RX_ADDRESS[RX_ADR_WIDTH]={0x34,0x43,0x10,0x10,0x01}; //接收地址

二、接收或发送模式配置过程

首先进行初始化,并检测NRF24L01是否连接成功;再将传感器配置为发送或接收模式,然后执行发送数据或接收数据。

三、具体函数介绍

1.针对NRF24L01对SPI进行修改

//针对NRF24L01修改SPI1驱动
void NRF24L01_SPI_Init(void)
{
    __HAL_SPI_DISABLE(&hspi1);               //先关闭SPI1
    hspi1.Init.CLKPolarity=SPI_POLARITY_LOW; //串行同步时钟的空闲状态为低电平
    hspi1.Init.CLKPhase=SPI_PHASE_1EDGE;     //串行同步时钟的第1个跳变沿(上升或下降)数据被采样
    HAL_SPI_Init(&hspi1);										 //硬件SPI1初始化
    __HAL_SPI_ENABLE(&hspi1);                //使能SPI1
}

2.NRF24L01初始化

//初始化24L01的IO口
void NRF24L01_Init(void)
{
    GPIO_InitTypeDef GPIO_Initure;
    __HAL_RCC_GPIOA_CLK_ENABLE();			//开启GPIOA时钟
    __HAL_RCC_GPIOB_CLK_ENABLE();			//开启GPIOB时钟
    GPIO_Initure.Pin=GPIO_PIN_0|GPIO_PIN_1;	//PB1,0推挽输出
    GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP;  //输出
    HAL_GPIO_Init(GPIOB,&GPIO_Initure);     //初始化
	GPIO_Initure.Pin=GPIO_PIN_4;			//PA4上拉输入
	GPIO_Initure.Mode=GPIO_MODE_INPUT;      //输入
	HAL_GPIO_Init(GPIOA,&GPIO_Initure);     //初始化	
	MX_SPI1_Init();    		    			//初始化SPI1
	NRF24L01_SPI_Init();            		//针对NRF的特点修改SPI的设置
	NRF24L01_CE_LOW(); 			    		//使能24L01
	NRF24L01_SPI_CS_DISABLE();	   			//SPI片选取消	 		 	 
}

3.配置SPI的传输速度

*SPI速度=fAPB1/分频系数
static void SPI1_SetSpeed(uint8_t SPI_BaudRatePrescaler)
{
    assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_BaudRatePrescaler));//判断有效性
    __HAL_SPI_DISABLE(&hspi1);            //关闭SPI
    hspi1.Instance->CR1&=0XFFC7;          //位3-5清零,用来设置波特率
    hspi1.Instance->CR1|=SPI_BaudRatePrescaler;//设置SPI速度
    __HAL_SPI_ENABLE(&hspi1);             //使能SPI
}

4.往串行Flash写入并接收一个字节数据

uint8_t SPIx_ReadWriteByte(SPI_HandleTypeDef* hspi,uint8_t byte)
{
  uint8_t d_read,d_send=byte;
  if(HAL_SPI_TransmitReceive(hspi,&d_send,&d_read,1,0xFF)!=HAL_OK)
  {
    d_read=0xFF;
  }
  return d_read; 
}

5.检测NRF24L01硬件连接是否正常

uint8_t NRF24L01_Check(void)
{
	uint8_t buf[5]={0XA5,0XA5,0XA5,0XA5,0XA5};
	uint8_t i;
	SPI1_SetSpeed(SPI_BAUDRATEPRESCALER_8); //spi速度为8.0Mhz
	//(24L01的最大SPI时钟为10Mhz)  
	NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,buf,5);//写入5个字节的地址
	NRF24L01_Read_Buf(TX_ADDR,buf,5); //读出写入的地址
	for(i=0;i<5;i++)
	if(buf[i]!=0XA5)
		break;
	if(i!=5)
		return 1;		//检测24L01错误	
	return 0;		 	//检测到24L01
}	

6.SPI写寄存器

uint8_t NRF24L01_Write_Reg(uint8_t reg,uint8_t value)
{
	 uint8_t status;	
	 NRF24L01_SPI_CS_ENABLE();                 //使能SPI传输
	 status =SPIx_ReadWriteByte(&hspi1,reg);   //发送寄存器号 
	 SPIx_ReadWriteByte(&hspi1,value);         //写入寄存器的值
	 NRF24L01_SPI_CS_DISABLE();                //禁止SPI传输	   
	 return(status);       			//返回状态值
}
 

7.SPI读寄存器

uint8_t NRF24L01_Read_Reg(uint8_t reg)
{
	uint8_t reg_val;	    
 	NRF24L01_SPI_CS_ENABLE();          //使能SPI传输		
    SPIx_ReadWriteByte(&hspi1,reg);   //发送寄存器号
    reg_val=SPIx_ReadWriteByte(&hspi1,0XFF);//读取寄存器内容
    NRF24L01_SPI_CS_DISABLE();          //禁止SPI传输		    
    return(reg_val);           //返回状态值
}		

8.在指定位置读出指定长度的数据

uint8_t NRF24L01_Read_Buf(uint8_t reg,uint8_t *pBuf,uint8_t len)
{
  uint8_t status,uint8_t_ctr;	
  NRF24L01_SPI_CS_ENABLE();           //使能SPI传输
  status=SPIx_ReadWriteByte(&hspi1,reg);//发送寄存器值(位置),并读取状态值   	   
  for(uint8_t_ctr=0;uint8_t_ctr<len;uint8_t_ctr++)
  {
    pBuf[uint8_t_ctr]=SPIx_ReadWriteByte(&hspi1,0XFF);//读出数据
  }
  NRF24L01_SPI_CS_DISABLE();       //关闭SPI传输
  return status;        //返回读到的状态值
}

9.在指定位置写入指定长度的数据

uint8_t NRF24L01_Write_Buf(uint8_t reg, uint8_t *pBuf, uint8_t len)
{
  uint8_t status,uint8_t_ctr;	    
  NRF24L01_SPI_CS_ENABLE();          //使能SPI传输
  status = SPIx_ReadWriteByte(&hspi1,reg);//发送寄存器值(位置),并读取状态值
  for(uint8_t_ctr=0; uint8_t_ctr<len; uint8_t_ctr++)
  {
    SPIx_ReadWriteByte(&hspi1,*pBuf++); //写入数据	 
  }
  NRF24L01_SPI_CS_DISABLE();       //关闭SPI传输
  return status;          //返回读到的状态值
}		

10.将NRF24L01配置为接收模式

void NRF24L01_RX_Mode(void)
{
  NRF24L01_CE_LOW();	  
  NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x0F);	 //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC
  NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01);    //使能通道0的自动应答    
  NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01);//使能通道0的接收地址  	 
  NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,200);	     //设置RF通信频率		  
  NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);//设置TX发射参数,0db增益,2Mbps,低噪声增益开启   
  NRF24L01_Write_Reg(NRF_WRITE_REG+RX_PW_P0,RX_PLOAD_WIDTH);//选择通道0的有效数据宽度 	    
  NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(uint8_t*)RX_ADDRESS,RX_ADR_WIDTH);//写RX节点地址
  NRF24L01_CE_HIGH(); //CE为高,进入接收模式 
  HAL_Delay(1);
}	

11.将NRF24L01配置为发送模式

void NRF24L01_TX_Mode(void)
{														 
  NRF24L01_CE_LOW();	    
  NRF24L01_Write_Buf(NRF_WRITE_REG+TX_ADDR,(uint8_t*)TX_ADDRESS,TX_ADR_WIDTH);//写TX节点地址 
  NRF24L01_Write_Buf(NRF_WRITE_REG+RX_ADDR_P0,(uint8_t*)RX_ADDRESS,RX_ADR_WIDTH); //设置TX节点地址,主要为了使能ACK	  
  NRF24L01_Write_Reg(NRF_WRITE_REG+EN_AA,0x01);     //使能通道0的自动应答    
  NRF24L01_Write_Reg(NRF_WRITE_REG+EN_RXADDR,0x01); //使能通道0的接收地址  
  NRF24L01_Write_Reg(NRF_WRITE_REG+SETUP_RETR,0xff);//设置自动重发间隔时间:4000us + 86us;最大自动重发次数:15次
  NRF24L01_Write_Reg(NRF_WRITE_REG+RF_CH,200);       //设置RF通道为40
  NRF24L01_Write_Reg(NRF_WRITE_REG+RF_SETUP,0x0f);  //设置TX发射参数,0db增益,2Mbps,低噪声增益开启   
  NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG,0x0e);    //配置基本工作模式的参数;PWR_UP,EN_CRC,16BIT_CRC,接收模式,开启所有中断
  NRF24L01_CE_HIGH();//CE为高,10us后启动发送
  HAL_Delay(1);
}

12.NRF24L01接收一次数据

uint8_t NRF24L01_RxPacket(uint8_t *rxbuf)
{
	uint8_t sta;		
    SPI1_SetSpeed(SPI_BAUDRATEPRESCALER_8); //spi速度为4.0Mhz(24L01的最大SPI时钟为10Mhz) 
	sta=NRF24L01_Read_Reg(STATUS);  //读取状态寄存器的值    	 
	NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
	if(sta&RX_OK)//接收到数据
	{
		NRF24L01_Read_Buf(RD_RX_PLOAD,rxbuf,RX_PLOAD_WIDTH);//读取数据
		NRF24L01_Write_Reg(FLUSH_RX,0xff);//清除RX FIFO寄存器 
		return 0; 
	}	   
	return 1;//没收到任何数据
}			

13.NRF24L01发送一次数据

uint8_t NRF24L01_TxPacket(uint8_t *txbuf)
{
	uint8_t sta;
	SPI1_SetSpeed(SPI_BAUDRATEPRESCALER_32); 
	HAL_GPIO_WritePin(NRF24L01_CE_PORT,NRF24L01_CE_PIN,GPIO_PIN_RESET);
    NRF24L01_Write_Buf(WR_TX_PLOAD,txbuf,TX_PLOAD_WIDTH);//写数据到TX BUF  32个字节
	HAL_GPIO_WritePin(NRF24L01_CE_PORT,NRF24L01_CE_PIN,GPIO_PIN_SET);
	while(NRF24L01_IRQ_PIN_READ()==1)//等待发送完成
	sta=NRF24L01_Read_Reg(STATUS);  //读取状态寄存器的值	   
	NRF24L01_Write_Reg(NRF_WRITE_REG+STATUS,sta); //清除TX_DS或MAX_RT中断标志
	if(sta&MAX_TX)//达到最大重发次数
	{
		NRF24L01_Write_Reg(FLUSH_TX,0xff);//清除TX FIFO寄存器 
		return MAX_TX; 
	}
	if(sta&TX_OK)//发送完成
	{
		return TX_OK;
	}
	return 0xff;//其他原因发送失败
}

14.开启NRF24L01的低功耗模式

void NRF_LowPower_Mode(void)
{
	NRF24L01_CE_LOW();	 
	NRF24L01_Write_Reg(NRF_WRITE_REG+CONFIG, 0x00);		//配置工作模式:掉电模式
}

总结

发送模式:
if(NRF24L01_TxPacket(tmp_buf5)==TX_OK)
	printf("NRF24L01无线模块数据发送成功:%s\n",tmp_buf5);
else
	printf("NRF24L01无线模块数据发送失败\n");

接收模式:
NRF24L01_RX_Mode();
printf("进入数据接收模式\n");
if(receive_buf[0] == 1)
	printf("接收到数组第一位为1的数据\r\n");
else
	printf("未接收到符合条件的数据\r\n");

通过配置发送和接收地址,可以实现一对多的数据传输。
修改函数中的参数可以对信号传输的通信频段(在2.400-2.525GHz之间)
修改信号传输的距离和增益等。
不过在实现过程中遇到了一个奇怪的问题,就是要先开接收器,再开发送器才能建立正常的连接。

热门文章

暂无图片
编程学习 ·

那些年让我们目瞪口呆的bug

程序员一生与bug奋战&#xff0c;可谓是杀敌无数&#xff0c;见怪不怪了&#xff01;在某知识社交平台中&#xff0c;一个“有哪些让程序员目瞪口呆的bug”的话题引来了6700多万的阅读&#xff0c;可见程序员们对一个话题的敏感度有多高。 1、麻省理工“只能发500英里的邮件” …
暂无图片
编程学习 ·

redis的下载与安装

下载redis wget http://download.redis.io/releases/redis-5.0.0.tar.gz解压redis tar -zxvf redis-5.0.0.tar.gz编译 make安装 make install快链方便进入redis ln -s redis-5.0.0 redis
暂无图片
编程学习 ·

《大话数据结构》第三章学习笔记--线性表(一)

线性表的定义 线性表&#xff1a;零个或多个数据元素的有限序列。 线性表元素的个数n定义为线性表的长度。n为0时&#xff0c;为空表。 在比较复杂的线性表中&#xff0c;一个数据元素可以由若干个数据项组成。 线性表的存储结构 顺序存储结构 可以用C语言中的一维数组来…
暂无图片
编程学习 ·

对象的扩展

文章目录对象的扩展属性的简洁表示法属性名表达式方法的name属性属性的可枚举性和遍历可枚举性属性的遍历super关键字对象的扩展运算符解构赋值扩展运算符AggregateError错误对象对象的扩展 属性的简洁表示法 const foo bar; const baz {foo}; baz // {foo: "bar"…
暂无图片
编程学习 ·

让程序员最头疼的5种编程语言

世界上的编程语言&#xff0c;按照其应用领域&#xff0c;可以粗略地分成三类。 有的语言是多面手&#xff0c;在很多不同的领域都能派上用场。大家学过的编程语言很多都属于这一类&#xff0c;比如说 C&#xff0c;Java&#xff0c; Python。 有的语言专注于某一特定的领域&…
暂无图片
编程学习 ·

写论文注意事项

参考链接 给研究生修改了一篇论文后&#xff0c;该985博导几近崩溃…… 重点分析 摘要与结论几乎重合 这一条是我见过研究生论文中最常出现的事情&#xff0c;很多情况下&#xff0c;他们论文中摘要部分与结论部分重复率超过70%。对于摘要而言&#xff0c;首先要用一小句话引…
暂无图片
编程学习 ·

安卓 串口开发

上图&#xff1a; 上码&#xff1a; 在APP grable添加 // 串口 需要配合在项目build.gradle中的repositories添加 maven {url "https://jitpack.io" }implementation com.github.licheedev.Android-SerialPort-API:serialport:1.0.1implementation com.jakewhart…
暂无图片
编程学习 ·

2021-2027年中国铪市场调研与发展趋势分析报告

2021-2027年中国铪市场调研与发展趋势分析报告 本报告研究中国市场铪的生产、消费及进出口情况&#xff0c;重点关注在中国市场扮演重要角色的全球及本土铪生产商&#xff0c;呈现这些厂商在中国市场的铪销量、收入、价格、毛利率、市场份额等关键指标。此外&#xff0c;针对…
暂无图片
编程学习 ·

Aggressive cows题目翻译

描述&#xff1a; Farmer John has built a new long barn, with N (2 < N < 100,000) stalls.&#xff08;John农民已经新建了一个长畜棚带有N&#xff08;2<N<100000&#xff09;个牛棚&#xff09; The stalls are located along a straight line at positions…
暂无图片
编程学习 ·

剖析组建PMO的6个大坑︱PMO深度实践

随着事业环境因素的不断纷繁演进&#xff0c;项目时代正在悄悄来临。设立项目经理转岗、要求PMP等项目管理证书已是基操&#xff0c;越来越多的组织开始组建PMO团队&#xff0c;大有曾经公司纷纷建造中台的气质&#xff08;当然两者的本质并不相同&#xff0c;只是说明这个趋势…
暂无图片
编程学习 ·

Flowable入门系列文章118 - 进程实例 07

1、获取流程实例的变量 GET运行时/进程实例/ {processInstanceId} /变量/ {变量名} 表1.获取流程实例的变量 - URL参数 参数需要值描述processInstanceId是串将流程实例的id添加到变量中。变量名是串要获取的变量的名称。 表2.获取流程实例的变量 - 响应代码 响应码描述200指…
暂无图片
编程学习 ·

微信每天自动给女[男]朋友发早安和土味情话

微信通知&#xff0c;每天给女朋友发早安、情话、诗句、天气信息等~ 前言 之前逛GitHub的时候发现了一个自动签到的小工具&#xff0c;b站、掘金等都可以&#xff0c;我看了下源码发现也是很简洁&#xff0c;也尝试用了一下&#xff0c;配置也都很简单&#xff0c;主要是他有一…
暂无图片
编程学习 ·

C语言二分查找详解

二分查找是一种知名度很高的查找算法&#xff0c;在对有序数列进行查找时效率远高于传统的顺序查找。 下面这张动图对比了二者的效率差距。 二分查找的基本思想就是通过把目标数和当前数列的中间数进行比较&#xff0c;从而确定目标数是在中间数的左边还是右边&#xff0c;将查…
暂无图片
编程学习 ·

项目经理,你有什么优势吗?

大侠被一个问题问住了&#xff1a;你和别人比&#xff0c;你的优势是什么呢? 大侠听到这个问题后&#xff0c;脱口而出道&#xff1a;“项目管理能力和经验啊。” 听者抬头看了一下大侠&#xff0c;显然听者对大侠的这个回答不是很满意&#xff0c;但也没有继续追问。 大侠回家…
暂无图片
编程学习 ·

nginx的负载均衡和故障转移

#注&#xff1a;proxy_temp_path和proxy_cache_path指定的路径必须在同一分区 proxy_temp_path /data0/proxy_temp_dir; #设置Web缓存区名称为cache_one&#xff0c;内存缓存空间大小为200MB&#xff0c;1天没有被访问的内容自动清除&#xff0c;硬盘缓存空间大小为30GB。 pro…
暂无图片
编程学习 ·

业务逻辑漏洞

身份认证安全 绕过身份认证的几种方法 暴力破解 测试方法∶在没有验证码限制或者一次验证码可以多次使用的地方&#xff0c;可以分为以下几种情况︰ (1)爆破用户名。当输入的用户名不存在时&#xff0c;会显示请输入正确用户名&#xff0c;或者用户名不存在 (2)已知用户名。…