人工智能数学基础12:数列和函数的极限

一、数列的定义

如果按照某一法则,对每个n∈N+,对应着一个确定的实数xn,这些实数xn,按照下标n从小到大排列得到的一个序列:
x1,X2,x3,…,xn,…
就叫做数列,简记为数列{xn}。数列中的每一个数叫做数列的项,第n项xn叫做数列的一般项(或通项)。

数列{xn}可以看作自变量为正整数n的函数:xn=f(n),n∈N+

二、数列极限

设{xn}为一数列,如果存在常数a,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式
|xn-a|<ε
都成立,那么就称常数a是数列{xn}的极限,或者称数列{xn}收敛于a,记为:
在这里插入图片描述
或:
在这里插入图片描述
如果不存在这样的常数a,就说数列{xn}没有极限,或者说数列{xn}是发散的。用数学语言描述为:
在这里插入图片描述

三、收敛数列的性质

  1. 极限唯一性定理:如果数列{xn}收敛,那么它的极限唯一;
  2. 收敛数列的有界性定理:如果数列{xn}收敛,那么数列{xn}一定有界;
  3. 收敛数列的保号性:如果数列{xn}存在极限a,且a>0(或a<0),那么存在正整数N,使得n>N时,都有xn>0(或xn<0);反过来,如果数列{xn}从某项其有xn≥0(或xn≤0),且该数列存在极限a,那么a≥0(或a≤0)
  4. 收敛数列与其子数列间的关系:如果数列{xn}收敛于a,则其任意子数列也收敛于a。反过来,如果一个数列的两个子数列收敛于不同的极限,则该数列发散;
  5. 柯西极限存在准则:数列{xn}收敛的充分必要条件是:对于任意给定的正数ε,存在正整数N,使得当m>N,n>N时,有:|xn-xm|<ε。

四、函数极限

在自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限。

定义1: 设函数f(x)在点x0的某一去心邻域内有定义,如果存在常数A,对于任意给定的正数ε(不论它多么小),总存在正数δ,使得当x满足不等式:0<|x-x0|<δ时,对应的函数值f(x)都满足不等式:
|f(x)-A|<ε
那么常数A就叫做函数f(x)当x一>x0时的极限,记作:

在这里插入图片描述
定义中0<|x-x0|<δ表示x≠x0,所以x一>x0时f(x)有没有极限与f(x)在点x0是否有定义并无关系。
定义1可以简单地表述为:
在这里插入图片描述

上述定义中,x是可以从坐标轴左侧或右侧趋近于x0,但有时只需要考虑仅从x0的左侧趋近于x0(记为x一>x0),或仅从x的右侧趋近于0(记为x一>x0+)。

当从左侧趋近于x0时,0<|x-x0|<δ的条件改为:x0-δ<x<x0,此时的极限叫做左极限,记为:
在这里插入图片描述
当从右侧趋近于x0时,0<|x-x0|<δ的条件改为:x0<x<x0+δ,此时的极限叫做右极限,记为:
在这里插入图片描述
左极限与右极限统称为单侧极限。
函数f(x)当x一>x0时极限存在的充分必要条件是左极限及右极限各自存在并且相等,如果都存在但不相等,则函数的极限也不存在。

定义2 设函数f(x)当|x|大于某一正数时有定义。如果存在常数A,对于任意给定的正数ε(不论它多
么小),总存在着正数X,使得当x满足不等式:|x|>X时,对应的函数值f(x)都满足不等式
|f(x)-A|<ε
那么常数A就叫做函数f(x)当x一>∞时的极限,记作:
在这里插入图片描述
可以简单的表达为:
在这里插入图片描述
如果x>0,且无限增大(记作x一>+∞),上面定义中的|x|>X可以改为x>X,记为:
在这里插入图片描述
如果x<0,且|x|无限增大(记作x一>-∞),上面定义中的|x|>X可以改为x<-X,记为:
在这里插入图片描述

五、函数极限的性质

  1. 定理1(极限唯一性定理):如果函数极限存在,那么它的极限唯一;
  2. 定理2(函数极限的局部有界性):如果函数f(x)在x一>x0时极限存在且等于A,那么存在常数M>0和δ>0,使得当0<|x-x0|<δ时,有|f(x)|≤M;
  3. 定理3(函数极限的局部保号性):如果函数f(x)在x一>x0时极限存在且等于A,且A>0(或A<0),那么存在常数δ>0,使得当0<|x-x0|<δ时,都有f(x)>0(或f(x)<0)。
  4. 定理3’:如果函数f(x)在x一>x0时极限存在且等于A(A≠0),那么就存在着x0的某一去心邻域:
    在这里插入图片描述
  5. 定理3’推论: 如果在x0的某去心邻域内f(x)≥0(或f(x≤0),且函数f(x)在x一>x0时极限存在且等于A(A≠0),那么A≥0(或A≤0)
  6. 定理4(函数极限与数列极限的关系):如果函数f(x)在x一>x0时极限存在,{xn}为函数f(x)定义域内任一收敛于x0的数列,且满足xn≠x0(n∈N+),那么相应的函数值{f(xn)}必收敛,且:
    在这里插入图片描述

六、小结

本文介绍了数列极限及函数极限的概念和定义,以及二者的性质,数列本质上是函数的一种特殊形式,是自变量为整数的函数,但由于数列不连续,因此又有其特殊性。

更多人工智能数学基础请参考专栏《人工智能数学基础》。

需要同济大学高等数学教材电子版的,请加微信公号后,通过微信公号提供的个人微信号加我微信即可。

写博不易,敬请支持:

如果阅读本文于您有所获,敬请点赞、评论、收藏,谢谢大家的支持!

关于老猿的付费专栏

  1. 付费专栏《https://blog.csdn.net/laoyuanpython/category_9607725.html 使用PyQt开发图形界面Python应用》专门介绍基于Python的PyQt图形界面开发基础教程,对应文章目录为《 https://blog.csdn.net/LaoYuanPython/article/details/107580932 使用PyQt开发图形界面Python应用专栏目录》;
  2. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10232926.html moviepy音视频开发专栏 )详细介绍moviepy音视频剪辑合成处理的类相关方法及使用相关方法进行相关剪辑合成场景的处理,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/107574583 moviepy音视频开发专栏文章目录》;
  3. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10581071.html OpenCV-Python初学者疑难问题集》为《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的伴生专栏,是笔者对OpenCV-Python图形图像处理学习中遇到的一些问题个人感悟的整合,相关资料基本上都是老猿反复研究的成果,有助于OpenCV-Python初学者比较深入地理解OpenCV,对应文章目录为《https://blog.csdn.net/LaoYuanPython/article/details/109713407 OpenCV-Python初学者疑难问题集专栏目录 》
  4. 付费专栏《https://blog.csdn.net/laoyuanpython/category_10762553.html Python爬虫入门 》站在一个互联网前端开发小白的角度介绍爬虫开发应知应会内容,包括爬虫入门的基础知识,以及爬取CSDN文章信息、博主信息、给文章点赞、评论等实战内容。

前两个专栏都适合有一定Python基础但无相关知识的小白读者学习,第三个专栏请大家结合《https://blog.csdn.net/laoyuanpython/category_9979286.html OpenCV-Python图形图像处理 》的学习使用。

对于缺乏Python基础的同仁,可以通过老猿的免费专栏《https://blog.csdn.net/laoyuanpython/category_9831699.html 专栏:Python基础教程目录)从零开始学习Python。

如果有兴趣也愿意支持老猿的读者,欢迎购买付费专栏。

老猿Python,跟老猿学Python!

☞ ░ 前往老猿Python博文目录 https://blog.csdn.net/LaoYuanPython ░

热门文章

暂无图片
编程学习 ·

那些年让我们目瞪口呆的bug

程序员一生与bug奋战&#xff0c;可谓是杀敌无数&#xff0c;见怪不怪了&#xff01;在某知识社交平台中&#xff0c;一个“有哪些让程序员目瞪口呆的bug”的话题引来了6700多万的阅读&#xff0c;可见程序员们对一个话题的敏感度有多高。 1、麻省理工“只能发500英里的邮件” …
暂无图片
编程学习 ·

redis的下载与安装

下载redis wget http://download.redis.io/releases/redis-5.0.0.tar.gz解压redis tar -zxvf redis-5.0.0.tar.gz编译 make安装 make install快链方便进入redis ln -s redis-5.0.0 redis
暂无图片
编程学习 ·

《大话数据结构》第三章学习笔记--线性表(一)

线性表的定义 线性表&#xff1a;零个或多个数据元素的有限序列。 线性表元素的个数n定义为线性表的长度。n为0时&#xff0c;为空表。 在比较复杂的线性表中&#xff0c;一个数据元素可以由若干个数据项组成。 线性表的存储结构 顺序存储结构 可以用C语言中的一维数组来…
暂无图片
编程学习 ·

对象的扩展

文章目录对象的扩展属性的简洁表示法属性名表达式方法的name属性属性的可枚举性和遍历可枚举性属性的遍历super关键字对象的扩展运算符解构赋值扩展运算符AggregateError错误对象对象的扩展 属性的简洁表示法 const foo bar; const baz {foo}; baz // {foo: "bar"…
暂无图片
编程学习 ·

让程序员最头疼的5种编程语言

世界上的编程语言&#xff0c;按照其应用领域&#xff0c;可以粗略地分成三类。 有的语言是多面手&#xff0c;在很多不同的领域都能派上用场。大家学过的编程语言很多都属于这一类&#xff0c;比如说 C&#xff0c;Java&#xff0c; Python。 有的语言专注于某一特定的领域&…
暂无图片
编程学习 ·

写论文注意事项

参考链接 给研究生修改了一篇论文后&#xff0c;该985博导几近崩溃…… 重点分析 摘要与结论几乎重合 这一条是我见过研究生论文中最常出现的事情&#xff0c;很多情况下&#xff0c;他们论文中摘要部分与结论部分重复率超过70%。对于摘要而言&#xff0c;首先要用一小句话引…
暂无图片
编程学习 ·

安卓 串口开发

上图&#xff1a; 上码&#xff1a; 在APP grable添加 // 串口 需要配合在项目build.gradle中的repositories添加 maven {url "https://jitpack.io" }implementation com.github.licheedev.Android-SerialPort-API:serialport:1.0.1implementation com.jakewhart…
暂无图片
编程学习 ·

2021-2027年中国铪市场调研与发展趋势分析报告

2021-2027年中国铪市场调研与发展趋势分析报告 本报告研究中国市场铪的生产、消费及进出口情况&#xff0c;重点关注在中国市场扮演重要角色的全球及本土铪生产商&#xff0c;呈现这些厂商在中国市场的铪销量、收入、价格、毛利率、市场份额等关键指标。此外&#xff0c;针对…
暂无图片
编程学习 ·

Aggressive cows题目翻译

描述&#xff1a; Farmer John has built a new long barn, with N (2 < N < 100,000) stalls.&#xff08;John农民已经新建了一个长畜棚带有N&#xff08;2<N<100000&#xff09;个牛棚&#xff09; The stalls are located along a straight line at positions…
暂无图片
编程学习 ·

剖析组建PMO的6个大坑︱PMO深度实践

随着事业环境因素的不断纷繁演进&#xff0c;项目时代正在悄悄来临。设立项目经理转岗、要求PMP等项目管理证书已是基操&#xff0c;越来越多的组织开始组建PMO团队&#xff0c;大有曾经公司纷纷建造中台的气质&#xff08;当然两者的本质并不相同&#xff0c;只是说明这个趋势…
暂无图片
编程学习 ·

Flowable入门系列文章118 - 进程实例 07

1、获取流程实例的变量 GET运行时/进程实例/ {processInstanceId} /变量/ {变量名} 表1.获取流程实例的变量 - URL参数 参数需要值描述processInstanceId是串将流程实例的id添加到变量中。变量名是串要获取的变量的名称。 表2.获取流程实例的变量 - 响应代码 响应码描述200指…
暂无图片
编程学习 ·

微信每天自动给女[男]朋友发早安和土味情话

微信通知&#xff0c;每天给女朋友发早安、情话、诗句、天气信息等~ 前言 之前逛GitHub的时候发现了一个自动签到的小工具&#xff0c;b站、掘金等都可以&#xff0c;我看了下源码发现也是很简洁&#xff0c;也尝试用了一下&#xff0c;配置也都很简单&#xff0c;主要是他有一…
暂无图片
编程学习 ·

C语言二分查找详解

二分查找是一种知名度很高的查找算法&#xff0c;在对有序数列进行查找时效率远高于传统的顺序查找。 下面这张动图对比了二者的效率差距。 二分查找的基本思想就是通过把目标数和当前数列的中间数进行比较&#xff0c;从而确定目标数是在中间数的左边还是右边&#xff0c;将查…
暂无图片
编程学习 ·

项目经理,你有什么优势吗?

大侠被一个问题问住了&#xff1a;你和别人比&#xff0c;你的优势是什么呢? 大侠听到这个问题后&#xff0c;脱口而出道&#xff1a;“项目管理能力和经验啊。” 听者抬头看了一下大侠&#xff0c;显然听者对大侠的这个回答不是很满意&#xff0c;但也没有继续追问。 大侠回家…
暂无图片
编程学习 ·

nginx的负载均衡和故障转移

#注&#xff1a;proxy_temp_path和proxy_cache_path指定的路径必须在同一分区 proxy_temp_path /data0/proxy_temp_dir; #设置Web缓存区名称为cache_one&#xff0c;内存缓存空间大小为200MB&#xff0c;1天没有被访问的内容自动清除&#xff0c;硬盘缓存空间大小为30GB。 pro…
暂无图片
编程学习 ·

业务逻辑漏洞

身份认证安全 绕过身份认证的几种方法 暴力破解 测试方法∶在没有验证码限制或者一次验证码可以多次使用的地方&#xff0c;可以分为以下几种情况︰ (1)爆破用户名。当输入的用户名不存在时&#xff0c;会显示请输入正确用户名&#xff0c;或者用户名不存在 (2)已知用户名。…